Backflow correlations for the electron gas and metallic hydrogen.
نویسندگان
چکیده
We justify and evaluate backflow three-body wave functions for a two-component system of electrons and protons. Based on the generalized Feynman-Kacs formula, many-body perturbation theory, and band structure calculations, we analyze the use and the analytical form of the backflow function from different points of view. The resulting wave functions are used in variational and diffusion Monte Carlo calculations of the electron gas and of solid and liquid metallic hydrogen. For the electron gas, the purely analytic backflow and three-body form gives lower energies than those of previous calculations. For bcc hydrogen, analytical and optimized backflow-three-body wave functions lead to energies nearly as low as those from using local density approximation orbitals in the trial wave function. However, compared to wave functions constructed from density functional solutions, backflow wave functions have the advantage of only few parameters to estimate, the ability to include easily and accurately electron-electron correlations, and that they can be directly generalized from the crystal to a disordered liquid of protons.
منابع مشابه
Effects of Backflow Correlation in the Three-Dimensional Electron Gas: Quantum Monte Carlo Study
The correlation energy of the homogeneous three-dimensional interacting electron gas is calculated using the variational and fixed-node diffusion Monte Carlo methods, with trial functions that include backflow and three-body correlations. In the high density regime (rs ≤ 5) the effects of backflow dominate over those due to three-body correlations, but the relative importance of the latter incr...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کاملTransient-estimate Monte Carlo in the two-dimensional electron gas.
Energies of the ground state and low-lying excited states of the two-dimensional electron gas have been calculated by a transient-estimate Monte Carlo method. This is an exact fermion quantum Monte Carlo method that systematically improves upon the results of a variational energy without imposing nodal constraints. We focus upon the density rs51, where our previous variational Monte Carlo calcu...
متن کاملPreparation of BaCe0.9Yb0.1O3-δ asymmetrical membrane for hydrogen separation at high tempratures
A mixed proton–electron conducting perovskite was synthesized by liquid-citrate method and the corresponding membrane was prepared by pressing followed by sintering. The hydrogen permeability of BaCe0.9Yb0.1O3-δ was studied as a function of temperature and hydrogen partial pressure (PH2) gradient. Using 100% dry hydrogen at 1173 K, the hydrogen permeation rate of dense membranes (1.63 mm thick)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 68 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2003